Working with Strong Reducibilities above Totally Ω-c.e. Degrees

نویسنده

  • GEORGE BARMPALIAS
چکیده

We investigate the connections between the complexity of a c.e. set, as calibrated by its strength as an oracle for Turing computations of functions in the Ershov hierarchy, and how strong reducibilities allows us to compute such sets. For example, we prove that a c.e. degree is totally ω-c.e. iff every set in it is weak truth-table reducible to a hypersimple, or ranked, set. We also show that a c.e. degree is array computable iff every left-c.e. real of that degree is reducible in a computable Lipschitz way to a random left-c.e.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Working with Strong Reducibilities above Totally Ω-c.e. and Array Computable Degrees

We investigate the connections between the complexity of a c.e. set, as calibrated by its strength as an oracle for Turing computations of functions in the Ershov hierarchy, and how strong reducibilities allow us to compute such sets. For example, we prove that a c.e. degree is totally ω-c.e. iff every set in it is weak truth-table reducible to a hypersimple, or ranked, set. We also show that a...

متن کامل

On minimal wtt-degrees and computably enumerable Turing degrees

Computability theorists have studied many different reducibilities between sets of natural numbers including one reducibility (≤1), many-one reducibility (≤m), truth table reducibility (≤tt), weak truth table reducibility (≤wtt) and Turing reducibility (≤T ). The motivation for studying reducibilities stronger that Turing reducibility stems from internally motivated questions about varying the ...

متن کامل

A C.E. Real That Cannot Be SW-Computed by Any Ω Number

The strong weak truth table (sw) reducibility was suggested by Downey, Hirschfeldt, and LaForte as a measure of relative randomness, alternative to the Solovay reducibility. It also occurs naturally in proofs in classical computability theory as well as in the recent work of Soare, Nabutovsky and Weinberger on applications of computability to differential geometry. We study the sw-degrees of c....

متن کامل

Non-isolated quasi-degrees

A set A ⊆ ω is called 2-computably enumerable (2-c.e.), if there are computably enumerable sets A1 and A2 such that A1 −A2 = A. A set A ⊆ ω is quasi-reducible to a set B ⊆ ω (A ≤Q B), if there is a computable function g such that for all x ∈ ω we have x ∈ A if and only if Wg(x) ⊆ B. This reducibility was introduced by Tennenbaum (see [1], p.207) as an example of a reducibility which differs fro...

متن کامل

A Survey of Results on the d-c.e. and n-c.e. Degrees

So a 1-c.e. set is simply a c.e. set, and a 2-c.e. set is a difference of two c.e. sets (also called a d.c.e. set). Putnam actually called the n-c.e. sets “n-trial and error predicates” (and did not require A0 = ∅). On the other hand, Gold [Go65], in a paper published in the same volume of the journal, defined “n-r.e.” to mean Σn (and is sometimes falsely credited with the above definition). Er...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007